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Abstract

Thispaperpresents aperformance evaluation approach

to compare different distributed load balancing schemes on

a unified basis. This approach is an integration of simula-

tion, statistical and analytical models, and takes into ac-

count thefundamental system parameters that can possibly
affect the pe~ormance. We show that all the sender+”ni-
tiated distributed load balancing strategies can be modeled
by a central server open queuing network. Furthermore,
these load balancing strategies can be characterized by only
two queuing parameters – the average execution queue

length and the probability (hat a newly arrived task is ex-
ecuted locally or m“grated to another node. To capture the
relatwn between these queuingparameters and various sys-
tem parameters, a statistical analysis has been carried out
on the empirical data obtained through simulation. The
analytical queuing model is then used topredict the response
time of a system with any combination of systemparameters.
Experimental results are obtm”nedfor six dl~erent load bal-
ancing strategies. The proposed model provides pe~orm-
ance results in a straightforward manner and can be benefi-
cial to the system designers in assessing the system under va-
rying conditions.

L Introduction

Efficient utilization of a multicomputer system lies in its

ability to efficiently partition and balance the computational
load among its computing nodes. With the increasing popu-
larity of multicomputer systems, researchers and system de-
signers have been focusing on these essential issues. If the
decisions to allocate workload tasks to processing nodes are
fixed and are taken before actually running the problem,
then load balancing is considered static. For dynamic load
balancing, there me no fixed allocation decisions and load is
balanced depending upon the time dependent state of the
system. Dynamic load balancing has also been termed as
dynamic load sharing [3], or load distribution [8]. As noted
in [3], any simple dynamic load balancing algorithm im-
proves the performance of the system, and is better than no
load balancing. Dynamic load balancing strategies are char-
acterized by the manner in which information exchange and
control of workload allocation takes place. The control can
be centralized [14], fully distributed [2], [3], [4], [9], [12],
[15], [22] or semi distributed [1]. With fully distribtttedcon-
trol, the load balancing strategy is incorporated at every
node of the system in that each node in rhe system makes au-

tonomous decisions. A node decides whether the task sub-
mitted to it should be executed locally or transported to some
other node. If the task should be migrated, the local node
needs to know the load status of other nodes. Anode for task
migration can be selected randomly [31, [61, [221 or with

some other criteria [3]. However, the accuracy of scheduling
decisions in decentralized algorithms, depends on the accu-
racy and amount of state information [8].

Wang and Morris [23] proposed a number of relatively
simple load balancing algorithms and classified them into
two categories: source-initiated and server-initiated. In a
source–initiated algorithm, tasks enter the distributed sys-
tem via source nodes and areprocessed by server nodes. Fox
et aL [5] presented a load balancing scheme by making use
of the analogy of load balancing to minimizing an appropri-
ate energy function. In[15] and [20], various bidding algo-
rithms have been proposed, which belong to the sender-ini-
tiated class. A drafting algorithm belongs to the server-ini-
tiated class [13]. A comparison of these two types of algo-
rithms [16] reveals that in spite of the fact that the bidding
algorithm suffers tlom task-dumping or task–thrashing, it
performs consistently better than the drafting algorithm.
Task-thrashing is a phenomenon associated with load bal-
ancing where a lightly loaded node can become a victim of
task arrivals from other nodes [6], [12]. Load balancing al-
gorithms can also suffer from state woggling – another per-
formance decaying phenomenon in which processors fre-

quently change their status between low and high [16].
For systems with certain interconnection topologies,

distributed load balancing schemes based on task migration
among nearest neighbors have gained considerable atten-
tion. In a number of independent studies [6], [8], [10], [17],
variants of this strategy have been proposed and their effec-

tiveness has been proven both by simulation and implemen-
tation observations. KaE [ 17] has compared one version of
this strategy, known as Contacting Within Neighborhood
(CWN), to the Gradient Model [11] and has shown that
CWN spreads the load more quickly and performs better. In
two more studies [6], [17], the concept of load averaging
among neighbors is introduced. The advantage of load aver-
aging is that each node tries to keep its own load equal to the
average load among its nettrest neighbors. Shu and Ka16
[19] have proposed and implemented a revised version of
CWN known as Adaptive Contracting Within Neighbor-
hood (ACWN), which consistently shows better response
time compared to the Gradient model and Random strategy.
Grunwald et al. [8] have proposed a classification scheme

830

@ 1991 ACM 0-89791-459-7/91/0830 $01.50



for the type of information required to make load balancing
decisions.

Given the diversity of a number of proposed strategies
and their dependence on a number of parameters, it is diffl-
cult to compare their effectiveness on a unified basis. One
particular strategy may perform well under a certain combi-
nation of parameters, such as, system load or system com-
munication rate on a certain topology. The same strategy
may be outperformed by another strategy due to a difference
in information collection and scheduling overhead. In addi-
tion, simplified assumptions and neglecting important pa-
rameters sometimes obscures the relative merits and demer-
its of each strategy. This paper presents an approach to pre-
dict and compare the performance of different load balanc-
ing schemes based on a unified basis. Our approach, which
is an integration of simulation, statistics and analytical mod-

els, takes into account various system parameters, such as
system load, task migration time, scheduling overhead and
system topology etc., that can affect the performance. We
show that load balancing strategies, belonging to the sen-
der-initiatedclass, can bemodeledbyacentral serverqueu-
ing network. We also show that these strategies can be char-
acterized by only two parameters – the average queue length
and the probability that a task is executed locally or migrated
to another node. Through an extensive simulation, a large
number of values of the average queue length and theproba-
bility associated with task migration have been obtained. A
statistical analysis has been performed on these data points
to capture the relation between the queuing parameters and
the system parameters. The analytical queuing model is
then used to predict the response time of a system with any
set of parameters. Six different load balancing algorithms
have been studied and characterized.

This performance prediction approach has many advan-
tages. First, instead of assessing a particular strategy on the
basis of a selected set of experiments, any combination of
parameters can be used to predict the performance. Second,
all strategies can be relatively compared by selecting more
appropriate and realistic parametem. Finally, an existing
system can be tuned, and a system design can be evaluated
before it is actually buik Theresponsetime predictedbythe
model is compared with the response time produced by sim-
ulation for all six strategies.

2. Selected Load Balancing Strategies

We consider a fully homogeneous mukicomputer sys-
tem in which processing nodes are connected with each oth-
er through a symmetric topology, that is, each-node is linked
to the same number of nodes. The number of links per node,
called the degree of the network, is considered as one of the
system parameters and is denoted as L. The workload sub-
mitted to the system is assumed to be in the form of tasks,
which are submitted to each node with an average arrival
rate of a tasks per time-unit per node, ‘f%e task arrival pro-
cess is assumed to be Poisson. The load balancing control is

fully distributed for which each node makes an autonomous
decision to schedule a task by collecting the load status in-
formation from its neighbom. A task is either scheduled to a

local execution queue or it is migrated to one of the neigh-

bors connected with each communication channel. The in-
formation and scheduling takes a certain amount of time,

which is assumed to be exponentially distributed with an av-

erage of l/AS time-units. Information is collected by a
hardware@ftware component at each node and is called
CollcdorlScheduler.

Since information interchange and execution of the
scheduling algorithm takes a certain amount of time, the
tasks arriving during that time wait in a waiting queue. For
each communication link, a communication queue is main-
tained. The underlying network supports point-to-point
communication and the communication channel is modeled
by a server. A communication server transfers a task from

one node to another with an average of 1/% time-units.
The task communication time is also assumed to be expo-
nentially distributed. Each communication queue is served
on the FCFS basis. At each node, the incoming traftlc from
other nodes joins the locally generated traffic, and both are
handled with equal priority. Each node maintains an exeeu-

tion queue in which locally scheduled tasks are served by a
CPU on the FCFS basis. A task may migrate from node to
node in the network before finally being executed at some
node. The execution time is also assumed to be exponential-

ly distributed with an average of l/PE time-units.

We have analyzed six different sender-initiated load
balancing strategies for varying information collection
mechanisms and scheduling disciplines. Based on the infor-
mation interchange mechanism, these strategies can be fur-
ther classified into two categories. In the fwst category, the
information about the load and the status of other nodes is

collected at the time a task is scheduled for execution or mi-
gration. The load is expressed in terms of the length of the
execution queue. This load metric has been widely accepted
and experimental results have shown that it accurately re-
flects the CPU load [16]. In the second category, nodes ex-

change the load information among their neighbors periodi-
tally. Within each category, we have considered three dif-
ferent scheduling policies.

Catego .rv I: Information Exchanpe at the Time of
Task Schedule

●

9

●
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FRandom:

In this strategy, the task scheduler calculates the average

of the local load and the load of all neighbors, If the local
load is greater than the average, the task is sent to a ran-

domly selected neighbor. If the local execution queue is

empty (or local load is less than the average), then the task
is sent to the local execution queue.

FMin:

In this strategy, the task scheduler sends a new task to the

node that has the minimum load. However, if the local
node’s load is equal to the minimum load among neigh-
bors, the local node is given priority.
FAverage:
In this strategy, the task scheduler calculates the average



of all neighbors’ load and its own load. If the local load is
greater than the average, the task is sent to the neighbor
with the minimum load. However, if the local execution
queue is empty or the local load is less than the average,
the task is sent to the local execution queue.

Q@gorv II: Periodic Informat ion Exchantza
● pRandom:

This strategy is similar to FRandom except that every

node sends it own load information to all its neighbors pe-

riodically. The time period, T. for sending messages is a
system parameter.

. PMin:

This strategy is similar to FMin except that information
exchange is done periodically.

. PAverage:
This strategy is similar to FAverage except that informa-
tion exchange is done periodically.

3. The Performance Prediction Model

In this section, we describe the performance prediction
model for the distributed load balancing strategies described
above. ‘I%is model isanintegration of simulation, and statis-
tical and queuing models. First, we describe the queuing
model and show that the class of distributed load balancing
strategies described above can be modeled by an open cen-
tral server queuing model.

3.1. The Queuing Model

As described above, the multicotnputer system consid-
eredhere is symmetric and homogeneous. By symmetry, we
mean that the interconnection network of the system is areg-
ular graph with a fixed number of links per node. By homo-
geneity we imply that the processors of the system have
identical processing speeds. Similarly, all communication
channels and task schedulers are identical. The steady-state
task departure and arrival rates at every node are the same.
As explained earlier, ataskkeeps on migrating until it finds a

suitable node. When a task migrates from one node to anoth-
er, it sees a statistically identical node. Therefore, the stea-

dy-statekhavior of nearest neighbor load balancing can be
approximated by the open central server queuing model as
shown in Figure 1. The model consists of a waiting queue,L
communication queues and an execution queue. This model
is approximate, since routing of tasks is dependent on the
state of execution queues. However, as described in the next
section, simulation results obtained on actual network topol-
ogiesare very close to theanalyticalresults determined from
this model, which validate that theproposedmodelof Figure
1 indeed represents the task scheduling and migration pro-

cess.
The duration ofatask’sresidence time in thesystemcon-

sists of two phases. In the first phase, the task may keep on
migrating during the course of which it waits in the waiting
queue, gets service from the scheduler, waits in the commu-
nication queue, and then transfers to another node. At that
point the same cycle may start all over again. Once the task
is scheduled at the execution queue of a node, the second
phase starts, which includes the queuing and service time at
the CPU. In the fiist phase, the task can be viewed as occu-
pying either the task scheduler or one of the communication
links. The Markov chain shown in Figure 2 describes the
behavior of the central server which in turn explains the task
migration phenomenon before the task enters the execution
queue. The state of the Markov chain is described by (L. +1)

tuple, h, kl, . . kL in which ki represents the number

of tasks at the i-th queue ( O s i s L) at a node.
It follows [21] that the model cart be solved by the Jack-

sonian network, which has the product form solution; that is,

the joint probability of kj tasksat queuej (j = 0,1,..., L) is
given by the product:

L

Wok,, ,k, . . .kL) = ~ Pl{kj)

j=o

where ~j(kj) is the probability of kj tasks atj-th queue and
is given by:

~j{kj) H (1 – Qj) e?

Scheduler

Waiting Queue Information
Co ector ~—

111% Ps Communication Queue I
●

Plj
Migrated

●
iA

A
●

A
Execution Queue

●

P;
Locally submitted tasks 1-
with rate2 Communication Queue

Sink

Figure 1: Distributed load balancing represented by open central server model.

tasks
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Figure 2: Markov chain with the state of the chain describing the number of tasks at each queue of a node.

For thej-th component, the average utilization, Q], is equal

to ~j/Pj. The equation implies that the lengths of all queues
are mutually independent in a steady state. The above model
can also be solved while considering the probabilistic be-
havior of a task, Suppose, after the task is served by the

scheduler, it goes to the i–th link with probability Pi or it

enters the local execution queue with the probability P..
Whena task leaves (enters) the waiting queue, thenumberof
tasks in that queue is decreased (increased) by one. Similar-
ly, when a task is served by the communication, a statistical-
ly identical task joins the waiting queue. The average queue
length and average response time for the j–th component is
given by:

respectively. The’~verage number of tasks at a n&l’e is the

sum of the average number of tasks at each component of a
node and is given by

.–~j

from which thewaverage res~nse time before the task is
scheduled in the execution queue can be computed as [2 1]:

1 / (p#o) ‘= I Pj / (p@j)

1- ~ / (f’r#o) + ~, 1 - ‘Pj / @#’O)

Once a task is scheduled at a local execution queue, the
response time from the time it is scheduled to the time it fi-
nishes execution is given by:

where EINEI is the average execution queue length. The

complete response time, therefore, is given by

E[R] = E[R~] + E[RJ ,

Theaboveequation implies that, foragivensystem load,

w and Pj ‘s, the response time yielded by a load balancing

strategy can be calculated if the probability, P., and the av-

erageexecution queue length, HNEI is determined. h oth-

er words, P., is the probability with which a load balancing
strategy schedules the tasks locally. The probability that a

task will be migrated to another node is simply 1 – P. and
migration probabilities to individual channels at each node

are identical. The average execution queue length, E[NK],
determines how smoothly the load is balanced. Both param-

eters, Po and E[N~], depend on system parameters, such as

1, p,, Ac, p,, T. ~dL In the next sections, we briefly
describe the simulation methodology that is used to obtain a
very large data set from different test cases. We describe
how we performed statistical analysis on the simulation data

and determined the sensitivity of PO and E[Nd against dif-
ferent system parameters.

3.2. The Simulation Model

The above mentioned load balancing strategies were

simulated on an Encore Multimax. The simulator accepts

the topology of the network along with 2, ps, PC, &
Iengthof simulation run, andchoiceof loadbalancing strate-
gies and their associated parameters. The results produced
by the simulator include average response time, utilization
of individual nodes, average time spent in communication,
average number of messages, throughput, average number
of migrations made by a task and their distribution, average
lengths of waiting, communication and execution queues.
In addition to average values, the variance and each node’s

individual statistics are also produced The probability, P.,
is then calculated by dividing the average number of locatly
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scheduled tasks by the total number of tasks arrived, at each
node. The important aspects of discrete-event simulation
are that it should be run fora sufficiently long time and initial
transients should be removed before starting the accumula-
tion of statistics. Moreover, the confidence interval must be
calculated after rttming the same experiment with multiple
independent streams. All of these features have been incor-
porated in the simtdatorandallr esults are obtained with a99
% confidence interval.

Along series of simulation runs was conducted to obtain

a total of 500 data values for POand E[NE] were obtained,
for each strategy. Three different topologies were selected,
which included the ring, the hypercube and the folded hy-
percttbe [7], each consisting of 16 nodes. Each point for one

particular strategy was obtaittedon each of the topologies by
fining one parameter and varying the rest. In most cases,

1 was varied from 0.3 to 0.9 tasks per time-unit, PS was

varied from 8 to 16 tasks per time-unit and PC was varied

Table I: Estimation for PO and
its sensitivity versus system parameters.

S&ategy

FRandoon

FMin

FAverage

PPandom

PMin

PAverage

R-Square

0.9277

0.9505

0.8668

0.9356

0.9683

0.9038

System

Parameter

;inh

Pc

y

a

Liti

k

-!&_
a

Links

Pc

L
a

TV

Linb

Pc

y

a

Tu

L&

k
y

a

Tu

Links

Pc

y

Z!oefficlent
Estimate

1.72220
-0.15421
0.00116 +

0.001407
-1.32043
3.39618

-0.02139
0.00881
0.00841
3.02394

1.48038
-0.09421
0.00839
0.01214
1.04267

1.63440
-0.13364
-0.13337
-0.00214+
-0.00395
-1.23230
4.06852

-0.21302
-0.10590
0.00013 t
0.00300
— 48994

2.16996
-0.42800
-0.14715
-0.00146 +
-0.00356
-1.46303

Note All estimates of model parameters are statistically
significan~ except slightly significant ), and not significant (f).

from 8 to 16 task per time-unit. The task execution rate, p~,
was fixed as 1 task per time-unit in all cases. For strategies
that required aperiodic information update, the update time,

TM., period was varied from 0.5 time-units to 1.5 time-
umts.

It is worth mentioning that the simulator takes into ac-
count the time to schedule a task, which includes the ex-
change of state information and the execution of the sched-
uling algorithm itself. Most previous studies have ignored
this overhead. We have assumed an average scheduling

time, 1/,S, which in turn, can be normalized with respect to

the execution time, p,. In other words, when ~~ is 10tasks/

timeunit and g~ is 1 task/time-unit, the average task
scheduling time is 1I1O of the execution time. We consider it
an input parameter which can be observed from a real sys-
tem depending upon how the information message handling
and regular task migration is implemented.

3.3. Statistical Analysis

To characterize PO and E[NJ in terms of system pa-

rameters, such as ~, ~~, PC, TM and system network topol-
ogy, statistical analyses have keen performed. As described

atxwe, data on PO was collected for various values of the
system parameters for each load balancing strategy. A re-
gression analysis was then performed to obtain a model that

expresses PO in terms of the system parameters. It is ob-
served that the model shown in Equation 1 works quite well

for all six strategies. The estimates of aP and coeffl-

cients,~ ‘s, are given in Table I along with measures that de-

scribe how well the above model predicts the observed P. .
For instance, in case of FRandom, the R-Square value is
0.9277, which implies that the regression model is able to

compute 92.77 YO of variation observed values of P. . A
similar regression analysis approach is taken to characterize

E[N~] in terms of system parameters. In this case, the ob-
served model is given by Equation 2. This model fits ex-
tremely well, as is observedfiom its R–Squzue values (all R–

Squaxe values are 99 %) given in Table II. In case of E[N~],

the coefficients for A artdpc were found insignificant and
hence are ignored.

3.4. The Complete Model
The complete model for performance prediction is

shown in Flgttre 3. The performance measure is the average
task response time. As described above, the model building
consisted of running a large number of simulations, then ap-

plying statistical analysis to obtain models for PO and

EIIVE]. Using this model, thevahtes of PO and E[N~] can be
directly computed for any of the six load balancing strate-
gies with any combination of system load, communication
rate, task scheduling rate, load update period (for load bal-
ancing strategies belonging to category II) and network to-
pology. We then compute the average response time by US-

ing the formula given in section 3.1.
As explained earlier, this response time consists of hvo

parts. The first part is the average response time before a
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Po=[l+e- ( )%+IiW=$ + I&UC + I@ + #V + AT. – I
1

Equation (I)

E[N~] = exp (aq +~,$inks + /%#c + J%pS + 1%# + I%J’.
) Equation (II)

Table II: Estimation for E[N~] and
its sensitivity versus system parameters.

Strategy I IR-Square Parameter
I

Parameter
Estimate

‘RmdOOml0“”31I AS I MY
A 3.30085

FMin a
0.9926

-1.67735

Links -0.03932
— 86089

FAverage a
0.9945 –1.92121

ps -0.05420
3.07851

PRandom a
0.9981

-1.86021
Tu -0.02244

Links -0.05787

A 3.08250

PMin
0.9953

-1.59469
;“ 0.01106
Links -0.03587

A 2.70488

PAverage
0.9984

–1.85252
:“ -0.00950
Link -0.05200

task is scheduledin an execution queue. This is simply equal
to the time the task is scheduled (in the execution queue of a
node) minus the task arrival time. This response time, called

transient time, is completely described by Po, which indi-
cates the task migration tendency of a bad balancing strate-
gy. The second part of average response time shows how
much time (queuing delay plus execution time) a task takes
after eventually being scheduled. This time is equal to the
time the task finishes execution minus the time the task was
scheduled in the execution queue. The best transient re-

sponse time results when a strategy’s P. is neither very high
nor very low. In other words, the strategy should not have
task a thrashing tendency and yet it should make task migra-
tions whenever appropriate. The second part of the response
time depends on a strategy’s load equalization ability; that
is, a smaller average execution queue length will result if the
load is equally balanced. Both factors, however, are depen-
dent on each other. For example, if a strategy suffers from
task thrashing, execution queue length is not balanced and
the average value of queue length increases.

As an exarnple,Figure4 shows the plot of POversus sys-
tem load for all six strategies, on a 16-node hypercube. We
notice that at low load both FMin and PMin have high values

of PO, which sharply increase at high load. This implies that
both Min strategies schedule more tasks locally (and hence,
make less migrations) but transfer more tasks at high load.

In contras~ both ‘random’ strategies have low values of P.,
which implies that greater task migration takes place using

random algorithms. Figure 5 shows the variations in E[NE]

versus system load for all six strategies. From this figure, we

observe that, in this case, the value of E[N~] is the minimum
with FAverage followed by PAverage, and Ph4in results in
the largest average queue length.

4. Performance Prediction, Evaluation and
Comparison

After obtaining response time data from the perform-
ance prediction model, we compare it with the observed
simulation results. Six load balancing strategies along with

varying values of A, #S, PC, T. and different network to-
pologies provide a wide range of figures to make a compari-
son between the response time obtained with the model and
the response time obtained with simulation. However, we
compare the two figures by varying one parameter while
keeping the rest constant. Theresuks are quite encouraging,

and the difference between the two figures is found to be less

than ~ 7%. Since all results cannot be provided within this
paper, we present only those results with anoticeableimpact
of each parameter on response time produced by the model,
as well as by the simulation.

First, we examine the impact of system load on the aver-
age response time for all six strategies, shown in Figure 6
and Figure 7. In both figures, we have plotted the pairs of
average response time computed from the model and the av-
enge response time observed horn simulation. The differ-
ence in model and simulation results is also indicated on

these figures. The task scheduling rate, ps, and the task

communication rate p= are both 16 tasks/tim&unit. Sys-
tem topology is a 16-node hypercube network and load up-

date period, T. , is 0.5 time-units. In Figure 6, system load

Q is 0.5 (with A =0.5 and pE = 1). Figure 7 differs from
Figure 6 in that the system load is increased from 0.5 to 0.8.
From these figures, we observe the following
● The difference in the response time computed from the

model and the response time observed from simulation is
very small. For most of the cases, this difference is less
than 1%. The worst case difference is 6.52%.

● At low loading conditions, FAverage performs well,
whereas PRandom performs the worst of all. The differ-
ence in the performance of FRandom and PRandom is not
significant, implying that for random algorithms, infor-
mation exchange can be done either instantaneously w

periodically with T. = 0.5.
● me difference in the performance of FiWin and PiWin is

not significant. Again, this implies that information up-
date can be done by selecting either of the two principles.
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Figure 3: The complete Performance Prediction Model.

0.9

0.8

0.7

0.6

0.5

0.4 I I

0.4 0.5 0.6 ~ 0.7 0.8 0.9

Figure 4: Variations in ProbabilityPO versus system
load for various load balancing strategies.

This indicates that with TM =0.5, periodic update strate-
gies perform as well as fresh information update strate-
gies.
In order to check the validity of the proposed model for

various parameters, we change PS and PC but keep the rest
f~ed. These results are shown in Figures 8 and 9. A high
system load, eqoal to 0.8, is selected by first considering a
fast communication network and slow task scheduling rate

(PC = 16 ~ks/timeunits ad PS = 8 tashhw-unk),
and then considering a slow network and fast task sehedul-

ingrate with (PC =8 tasks/time-units and ps = 16tasks/ti-
me-units). Again, the model is shown to predict the average
response time, which closely matches the response time pro-
duced by simulation, Further insights drawn from these fig-
ures are summarized below.
. We note that task scheduling time has greater impact on

the average task response time than the task communica-

E[NE]
2.3

1.9

1.5

1.1

0.7

0.3
0.4 0.5 0.6 ~ 0.7 0.8 0.9

Figure 5: Variations in E[NE] length versus system
load for various load balancing strategies.

tion time. This is obvious because the average response
time with a slow sehedulingrate and high communication
rate (Figure 8) is greater than the response time with a fast

scheduling rate and slow communication rate (Figure 9).
The observation is true for all strategies.
Next, we show two arbitrarily chosen sets of system pa-

rameters. In the fwst set, a 16-node folded hyperculx with 5
links per node at a relatively low system load (0.6) is se-
lected. Thetaskcommunication rate andthetask scheduling

rate are both 12 tasks/time-unit and T= is equal to 1.5 time-
unit, which is relatively large. The results for this combina-
tion of parameters are shown in Figure 10 and are summa-
rized below.
●

●
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The difference in the response time for the model and sim-
ulation is again very smatl.
The periodic update strategies, PMin and PAverage, are
outperformed by FMin and FAverage because of the larg-

er value of Tw .



Comparison of response times predicted by the model and simulation for various
strategies with various system parameters on a 16-node hypercube topology.

I Legend Model:= Simulation: Dl I

2.1ale

FRhdom Fhin FAv&age PRhdom Phin PAve)age

Time-units

2.4

~ 2.1

!!! 1“8

% 1.5
S?
$J 1.2

$ 0.9

0.6

0.3

0

FRandom FMin FAverage PRandom PMin PAverage

Figure 62 = 0.5, PC = 16 task/time-uni~ Figure 7:1 = 0.8, #c = 16 task/time-unit,

ps = 16 task/time-unig T= = 0.5 tim~units. A = 16 task/time-unit, Tu = 0.5 time-units.

t3me-units Tree-units

0.3

0

FR&dom Fhin FAv;rage PR&dom Phin PAve;age

7.41 I-.

2.1
] gy%) (2.38%) (1.08%) (1.32%) I

0.3

0

FRana’om FMin FAverage PRandom PMin PAverage

Figure 8: A = 0,8, PC = 16 taskk.ime-unit, Figure 9: A = 0.8, PC = 8 task/time-unit,

/% = 8 tasldtime-unit, T,= 1.0 time-units. pS = 16 task/time-unit, T“ = 1.0 time-units.

● On the other hand, FRandom and PRandom yield identi-
cal results by showing their insensitivity to the load up
date method.
In the second set, we have selected a 16-node ring net-

work with medium system load equal to 0,7. Again, there-
sponse times predicted by the model match those produced
by the simulation, as shown in Figure 11.

Up to this point, the performance of the model is com-
pared with the same simulation test cases through which em-

pirical data for statistical modeling was obtained. After

characterizing PO and E[NE], the queuing model was used

to compute the average response time and the results were
compared with the same simulation results. Therefore, the
comparison of the model with simulation has only revealed
the correctness of the model. The validity of the proposed
model is more strongly established as we obtain response
time horn the model and compare it with some additional
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Comparison of response times predicted by the model and simulation for various
strategies with various system parameters on different network topologies.

Legend: Model:-

Time-units

2.4

0.3

0

FRandom Ffiin FAverage PRklom PMin PAve>age

Figure 10 ~ = 0.6, PC = 12 task/time+nit,

IZS = 12 task/time-unit, T. = 1.5 time-units.

Topology = 16-node Folded Hypercube.

Time-units
I 1

1.8

1.5

1.2

0.9

0.6

0.3

0

FR&dom FMin FAv;rage PR&dom PMin PAve>age

Figure 121 = 0.7, AC = 16 task/time-unit,

% = 16 task/time-unit, T. = 1.0 time-units.

Topology = 9–node Mesh.

0.6

0.3

0

FRandom Fkin FAv&age PR&dom Phin PAv;rage

Figure 11:2 = 0.7, PC =12 task/time-uni~

A = 12 task/time-unit, T. = 1.0 time-units.

Topology = 16-node Ring..

Time-units

2.4

0.6

0.3

0

FRatdom FMin FAverage PRandom PMin PAverage

Figure 13:1 = 0.7, PC = 16 task/time-unit,

AS = 16 task/time-unit, T. = 1.0 tim+units.

Topology = 8–node Fully Conected.

simulation runs. The empirical data from these simulation . P.4verage performs as well asFAverage, if TM is St_fIdl.

runs has not been used for statistical modeling. The addi- ● All nearest neighbor load balancing strategies perform
tional simulation runs include different network topologies better if the number of links per node are increased. This
with different parameters. The results of some combina- is because the probability that a node finds a suitable
tions are shown in Figures 12 and 13. By examining these neighbor for task migration improves with the increase in
figures, we conclude the following. the number of links.
. Agtin, the difference basvcen simulation and model is

small.
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● TIW difference in the performance of ‘random’ strategies

and ‘rein’ strategies is not very significant as compared to
the difference in the performance of ‘random’ and ‘aver-
aging’ strategies.

● Random algorithms can be used with periodic informa-
tion updates for any network topology because they gen-
erate less message traffic. This is especially true for the
fully connected network where PRandom performs as
well as FRandom.

. If the actual scheduling time, V for the random algo-
‘$’”rithm is less than that for ‘rein gonthms,PRandom can

be used instead of FMin, PMin or FRandom.

5. Concluding Remarks
In this paper, we have presented an approach for model-

ing the average task response time for distributed load bal-
ancing in multicomputer systems. With this approach, we
are able to compare different load brdancing schemes on a
unified basis. We have shown that these strategies can be
modeled by an open central server queuing network if the
system is symmetric and homogeneous. We believe that any
sender-initiated load balancing strategy can be modeled by
this queuing network. With examples from a wide range of
system parameters, it is shown that the average task response
timepredictedthrough the proposed model closely matches
the response time obtained via simulation. This approach
can be useful for analyzing and tuning an existing system,
and evaluating newly proposed strategies.
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